Heuristic Optimization Strategies in Finance - An Overview

Marianna Lyra

COMISEF Fellows’ Workshop: Numerical Methods and Optimization in Finance

Financial support from the EU Commission through COMISEF is gratefully acknowledged

June 18, 2009
Marianna Lyra
Early Stage Researcher - COMISEF Research Network

1. BA Business Administration - minor Finance, UCY
2. MSc Finance, UCY
3. PhD student JLU Giessen, DE
4. Research Interests: Apply Optimization Heuristics in Finance (Credit Risk Management)
5. Contact Info: http://comisef.wikidot.com/mariannalyra
1 Introduction
- Financial World
- Complexity

2 Heuristic Optimization Techniques
- Classical concept
- Differential Evolution

3 Financial Applications
- Optimization heuristic strategies in finance

4 Conclusion
- Have in mind
1. **Introduction**
 - Financial World
 - Complexity

2. **Heuristic Optimization Techniques**
 - Classical concept
 - Differential Evolution

3. **Financial Applications**
 - Optimization heuristic strategies in finance

4. **Conclusion**
 - Have in mind
Financial world

Financial problems

Optimization
Complexity

Least median of squares residuals as a function of α and β

Multiple local minima (optima)

Apply optimization heuristic techniques
Introduction
- Financial World
- Complexity

Heuristic Optimization Techniques
- Classical concept
- Differential Evolution

Financial Applications
- Optimization heuristic strategies in finance

Conclusion
- Have in mind
Local search procedure

1: Generate initial solution x^c
2: while stopping criteria not met do
3: Select $x^n \in \mathcal{N}(x^c)$ (neighbor to current solution)
4: if $f(x^n) < f(x^c)$ then
5: $x^c = x^n$
6: end if
7: end while
Introduction

Heuristic Optimization Techniques

Financial Applications

Conclusion

Classical concept

Heuristic Techniques

Construction methods

Local search methods

Trajectory methods

Population search

Threshold accepting

Differential evolution

Tabu search

Genetic algorithms

Hybrid Meta Heuristics
Introduction

Heuristic Optimization Techniques

Classical concept

- Construction methods
- Heuristic Techniques
- Local search methods

- Trajectory methods
- Population search

- Differential evolution
- Genetic algorithms
- Hybrid Meta Heuristics
Differential Evolution

Population based heuristic with remarkable performance in continuous numerical problems.

Example

\[r_{i,t} - r_t^s = \alpha + \beta(r_{m,t} - r_t^s) + \varepsilon_{i,t} \]

- Least Median of Squares Estimators (LMS) (Rousseeuw and Leroy (1987)):

\[\min_{\alpha,\beta}(\text{med}(\varepsilon_{i,t}^2)) \]
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

1. Generate random set values α and β (initial solutions)
2. Evaluate initial solutions minimizing LMS
3. Generate new candidate solutions from the initial one
4. Evaluate new candidate solutions minimizing LMS
5. Repeat until a very good solution is found
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

1. Generate random set values α and β (initial solutions)
2. Evaluate initial solutions minimizing LMS
3. Generate new candidate solutions from the initial one
4. Evaluate new candidate solutions minimizing LMS
5. Repeat until a very good solution is found
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

1. Generate random set values α and β (initial solutions)
2. Evaluate initial solutions minimizing LMS
3. Generate new candidate solutions from the initial one
4. Evaluate new candidate solutions minimizing LMS
5. Repeat until a very good solution is found
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

1. Generate random set values α and β (initial solutions)
2. Evaluate initial solutions minimizing LMS
3. Generate new candidate solutions from the initial one
4. Evaluate new candidate solutions minimizing LMS
5. Repeat until a very good solution is found
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

1. Generate random set values α and β (initial solutions)
2. Evaluate initial solutions minimizing LMS
3. Generate new candidate solutions from the initial one
4. Evaluate new candidate solutions minimizing LMS
5. Repeat until a very good solution is found
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Initialization

1. Step 1 & 2: Generate and evaluate random set values $\alpha[-1, 2]$ and $\beta[0, 1]$ (initial solutions)

2. $P(0) = \begin{pmatrix}
1 \\
2 \\
\vdots \\
d
\end{pmatrix}^{np}$

3. $\min_{\alpha, \beta}(\text{med}(\varepsilon_{i,t}^2))$
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Initialization

- Step 1 & 2: Generate and evaluate random set values \(\alpha[-1, 2]\) and \(\beta[0, 1]\) (initial solutions)

\[
P^{(0)} = \begin{pmatrix} 1 & \cdots & n_p \\ 2 & \cdots \\ \vdots \\ d \end{pmatrix}
\]

- \(\min_{\alpha, \beta} (\text{med}(\varepsilon^2_{i,t}))\)
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Generate new candidate solutions from the initial one

- Step 3a: Differential mutation

\[
P_{1,i}^{(0)} = \begin{pmatrix} 1 & 2 & \ldots & r_3 & \ldots & r_1 & \ldots & r_2 & \ldots & n_p \end{pmatrix}
\]

- \[P_{1,i}^{(v)} = P_{1,i}^{(0)} + F \times (P_{1,i}^{(0)} - P_{1,i}^{(0)})\]

- \(F\) scale factor \(\in [0, 1+]\) determines speed of shrinkage
Differential Evolution

Random crossover

Step 3b: Crossover elements from $P_{1,i}^{(0)}$ and $P_{1,i}^{(υ)}$

1. Generate for each parameter a uniform random number, $u_d \in [0, 1]$
2. Determine the crossover probability, $CR \in [0, 1]$
3. Only if $u < CR$, $P_{1,i}^{(u)} = P_{1,i}^{(υ)}$
4. else $P_{1,i}^{(u)} = P_{1,i}^{(0)}$
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Generate new candidate solutions from the initial one

- Step 3a: Differential mutation

\[
P_{1,i}^{(0)} = \begin{pmatrix} 1 & 2 & \cdots & r_3 & \cdots & r_1 & \cdots & r_2 & \cdots & n_p \end{pmatrix}
\]

- \(P_{2,i}^{(v)} = P_{2,r_1}^{(0)} + F \times (P_{2,r_2}^{(0)} - P_{2,r_3}^{(0)}) \)

- F scale factor \(\in [0, 1+] \) determines speed of shrinkage
Random crossover

Step 3b: Crossover elements from $P_{d,i}^{(0)}$ and $P_{d,i}^{(v)}$

1. Generate for each parameter a uniform random number, $u_d \in [0, 1]$
2. Determine the crossover probability, $CR \in [0, 1]$
3. Only if $u < CR$, $P_{d,i}^{(u)} = P_{d,i}^{(v)}$
4. else $P_{d,i}^{(u)} = P_{d,i}^{(0)}$
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Initialization

- Step 4: Evaluate new candidate solutions minimizing LMS
- if $f(P_{u,i}^{(u)}) < f(P_{i}^{(0)})$ then $f(P_{i}^{(0)}) = f(P_{i}^{(u)})$
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Initialization

- Step 4: Evaluate new candidate solutions minimizing LMS
- if \(f(P_{i}^{(u)}) < f(P_{i}^{(0)}) \) then \(f(P_{i}^{(0)}) = f(P_{i}^{(u)}) \)
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Initialization

- Step 5: Repeat steps 3 & 4 until a good solution is found or for a predefined number
Differential Evolution

Optimal parameter estimation of CAPM using LMS estimators

Initialization

- Step 5: Repeat steps 3 & 4 until a good solution is found or for a predefined number
Introduction
- Financial World
- Complexity

Heuristic Optimization Techniques
- Classical concept
- Differential Evolution

Financial Applications
- Optimization heuristic strategies in finance

Conclusion
- Have in mind
Optimization heuristic strategies in finance

Portfolio Optimization
- Transaction Costs
- Cardinality constraints
- Index tracking
- VAR

Robust methods
- Model estimation
- Model selection

Clustering
- Financial forecasting
- Portfolio improvement
- Mutual funds style
Optimization heuristic strategies in finance

Portfolio Optimization
- Transaction Costs
- Cardinality constraints
- Index tracking
- VAR

Robust methods
- Model estimation
- Model selection

Heuristics
- Financial forecasting
- Portfolio improvement
- Mutual funds style

Clustering
- Financial forecasting
- Portfolio improvement
- Mutual funds style
Optimization heuristic strategies in finance

Portfolio Selection

Dueck and Winker (1992) applied Threshold Accepting

1. Portfolio optimization using various risk measures
2. Index tracking to mutual fund replication
3. Currency portfolio optimization
Dueck and Winker (1992) applied Threshold Accepting

1. Portfolio optimization using various risk measures
2. Index tracking to mutual fund replication
3. Currency portfolio optimization
Optimization heuristic strategies in finance

Portfolio Selection

Dueck and Winker (1992) applied Threshold Accepting

1. Portfolio optimization using various risk measures
2. Index tracking to mutual fund replication
3. Currency portfolio optimization
Model estimation

1. Risk estimation and GARCH models
2. Indirect estimation and Agent Based Models
3. Yield curve estimation
Optimization heuristic strategies in finance

Model estimation

1. Risk estimation and GARCH models
2. Indirect estimation and Agent Based Models
3. Yield curve estimation
Optimization heuristic strategies in finance

Model estimation

1. Risk estimation and GARCH models
2. Indirect estimation and Agent Based Models
3. Yield curve estimation
Yield curve estimation

Fig. 6. Error in the estimation of the interest rates. Comparison of the traditional non-linear least squares and the GA for the Nelson and Siegel (1987) on the left and for the Svensson (1994) function on the right for 1 year (top graph) and 10 years (bottom graph) government bonds.
Model selection

1. Risk factor selection (Asset Pricing Theory model (APT))

\[r_{i,t} = \alpha + \sum_{f=1}^{k} \beta_f r_{f,t} + \varepsilon_{i,t} \] (3)

2. Selection of bankruptcy predictors

\[BMW \ assets = 0.8 \ German \ factor + 0.2 \ US \ factor + 0.9 \ automotive \ factor + 0.1 \ finance \ factor + BMW \ non \text{-} systematic \ risk \] (4)
Model selection

1. Risk factor selection (Asset Pricing Theory model (APT))

\[r_{i,t} = \alpha + \sum_{f=1}^{k} \beta_f r_{f,t} + \varepsilon_{i,t} \] \hspace{1cm} (3)

2. Selection of bankruptcy predictors

\[
BMW \text{ assets} = 0.8 \text{German factor} + 0.2 \text{US factor} \\
+ 0.9 \text{automotive factor} + 0.1 \text{finance factor} \\
+ BMW \text{ non–systematic risk} \hspace{1cm} (4)
\]
Optimization heuristic strategies in finance

Clustering

1. Bankruptcy prediction
2. Credit risk rating
3. Portfolio performance improvement
4. Identify optimal number of clusters
Clustering

1. Bankruptcy prediction
2. Credit risk rating
3. Portfolio performance improvement
4. Identify optimal number of clusters
Clustering

1. Bankruptcy prediction
2. Credit risk rating
3. Portfolio performance improvement
4. Identify optimal number of clusters
Optimization heuristic strategies in finance

Clustering

1. Bankruptcy prediction
2. Credit risk rating
3. Portfolio performance improvement
4. Identify optimal number of clusters
Introduction
- Financial World
- Complexity

Heuristic Optimization Techniques
- Classical concept
- Differential Evolution

Financial Applications
- Optimization heuristic strategies in finance

Conclusion
- Have in mind
Have in mind

Heuristic optimization techniques
- **Flexible** to tackle many **complex** optimization problems

Flexibility cost
- Might be computationally more demanding than traditional methods (not a limitation nowadays)
- Results carefully interpreted
Summary

- Apply Optimization Heuristics